HOPF GALOIS STRUCTURES FOR TOTALLY RAMIFIED *p*-ELEMENTARY ABELIAN GALOIS EXTENSIONS

LINDSAY N. CHILDS

This is a somewhat edited version of a short talk given at the 2016 Omaha workshop on Hopf Galois Structures and Galois Module Theory, May 26, 2016.

Egregious failure of the strong form of FTGT. Let L/K be a field extension with Galois group isomorphic to $\Gamma \cong G = (\mathbb{F}_p^n, +)$. Assume p > n.

Let A be the primitive n-dimensional nilpotent \mathbb{F}_p -algebra generated by z with $z^{n+1} = 0$. Then $(A, +) \cong (\mathbb{F}_p^n, +)$ and so the multiplication on A yields a nilpotent \mathbb{F}_p -algebra structure on $(G, +) = (\mathbb{F}_p^n, +)$. Let $\Gamma \cong (\mathbb{F}_p^n, \circ)$ where the operation \circ is defined using the multiplication on A by $a \circ b = a + b + a \cdot b$. If p > n then $(\mathbb{F}_p^n, \circ) \cong (\mathbb{F}_p^n, +)$.

In my other talk I described how a nilpotent \mathbb{F}_p -algebra structure A on (G, +) yields Hopf Galois structures on L/K by a K-Hopf algebra H associated to A, and related the surjectivity of the Galois correspondence from K-subHopf algebras of H to intermeditate fields between K and L to the ideal structure of A (using the main theorem from [Ch16b]). That led to the following set of examples:

Theorem 1. Let G be an elementary abelian p-group of order p^n . Let A be a primitive \mathbb{F}_p -algebra structure A on G, and let (G, \circ) be the corresponding group structure on \mathbb{F}_p^n . Suppose L/K is a Galois extension of fields with Galois group $\Gamma \cong (G, \circ)$. Then the primitive nilpotent \mathbb{F}_p -algebra A corresponds to an H-Hopf Galois structure on L/K for some K-Hopf algebra H, where the K-subHopf algebras of H form a single descending chain

$$H = H_1 \supset H_2 \supset \ldots \supset H_n \supset K.$$

Hence the Galois correspondence \mathcal{F} for H maps onto exactly n+1 fields F with $K \subseteq F \subseteq L$.

So the Hopf Galois structures arising from a primitive nilpotent algebra A seem to have a particularly rigid set of intermediate fields.

Date: June 10, 2016.

The question I wondered about is, are these Hopf Galois structures interesting for local Galois module theory? The bottom line is that I don't know.

In the rest of these notes I start looking at what the corresponding regular subgroups of $\operatorname{Perm}(\Gamma)$ look like for a primitive nilpotent algebra. In an Appendix, I look briefly at the ideal structure of the four other isomorphism classes of nilpotent algebras over \mathbb{F}_p of dimension 3.

Let $G \cong (\mathbb{F}_p^n, +)$, let A be a nilpotent \mathbb{F}_p -algebra structure on (G, +). Let (G, \circ) be the corresponding group structure, where

$$a \circ b = a + b + a \cdot b$$

Let T be the corresponding regular subgroup of Hol(G, +). Then

$$T = \{\tau(g) : g \in G\} \subset \operatorname{Perm}(G)$$

where $\tau(g)(x) = g \circ x$, hence $\tau(g)\tau(h) = \tau(g \circ h)$ in T. Thus

 $\tau: (G, \circ) \to T$

is an isomorphism from (G, \circ) into Perm(G).

Let L/K be a Galois extension of fields with abelian Galois group Γ of order p^n . Let $b: \Gamma \to (G, \circ)$ be an isomorphism of groups. Then the map

$$\beta = \tau b : \Gamma \to T$$

is a regular embedding of Γ into Hol(G).

The corresponding regular embedding $\alpha : G \to \operatorname{Perm}(\Gamma)$ is defined by

$$\alpha(g) = b^{-1}(\lambda(g))b:$$

for x in G, $\alpha(g)(x) = b^{-1}(\lambda(g)b(x)).$

Then $\lambda(\Gamma)$ normalizes $\alpha(G)$ in Perm(G): in fact, for $b(\gamma) = g$ in G,

$$\lambda(\gamma)\alpha(h)\lambda(\gamma)^{-1} = \alpha(h + g \cdot h).$$

So $\alpha(G)$ yields by descent the K-Hopf algebra $H = L[\alpha(G)]^{\Gamma}$ corresponding to A and the isomorphism $b : \Gamma \to (G, \circ)$, and H acts on L as follows: if

$$h = \sum_{g \in G} s_g \alpha(g)$$

then for t in L,

$$h(t) = \sum_{\gamma \in \Gamma} s_{-b(\gamma)} \gamma(t).$$

 $\mathbf{2}$

n=2. Let L/K be a Galois extension of fields with Galois group Γ an elementary abelian *p*-group of order p^2 , and let *G* also be an elementary abelian *p*-group of order p^2 . Let x_1, x_2 be a basis of $G \cong (\mathbb{F}_p^2, +)$ and define a nilpotent ring structure on *G* by setting $x_1^2 = dx_2$ and $x_2 \cdot x_i = 0$ for i = 1, 2. This defines the circle multiplication on *G* by

$$y \circ w = y + w + y \cdot w$$

for all y, w in (G, +). We define an isomorphism $b : \Gamma \to (G, \circ)$ by picking a basis u_1, u_2 for Γ and setting $b(u_1) = x_1, b(u_2) = x_2$. Then

$$b(u_1^{r_1}u_2^{r_2}) = x_1^{\circ r_1} \circ x_2^{\circ r_2} = r_1x_1 + \left(\binom{r_2}{2}d + r_2\right)x_2.$$

or in terms of components relative to the two bases for Γ and G,

$$b\binom{r_1}{r_2} = \binom{(r_1)}{r_2 + \binom{r_1}{2}d}.$$

Then

$$b^{-1} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = \begin{pmatrix} s_1 \\ s_2 - \binom{s_1}{2} d \end{pmatrix}.$$

We then define $\alpha : (G, +) \to \operatorname{Perm}(G)$ by

$$\alpha(\overline{r})(\overline{t}) = b^{-1}(\lambda(\overline{r})(b(\overline{t})))$$

= $b^{-1} \begin{pmatrix} r_1 + t_1 \\ r_2 + t_2 + {t_1 \choose 2} d \end{pmatrix} = \begin{pmatrix} r_1 + t_1 \\ r_2 + t_2 + {t_1 \choose 2} d - {t_1 + t_1 \choose 2} d \end{pmatrix}$

In particular,

$$\alpha \begin{pmatrix} 0\\1 \end{pmatrix} (\bar{t}) = \begin{pmatrix} t_1\\1+t_2 \end{pmatrix}$$
$$\alpha \begin{pmatrix} 1\\0 \end{pmatrix} (\bar{t}) = \begin{pmatrix} t_1+1\\t_2-t_1d \end{pmatrix}.$$

Thus the unique K-subHopf algebra of H corresponds to the subgroup $\alpha(\langle x_2 \rangle)$, which acts on G like $\langle \lambda(u_2) \rangle$.

Comparing with [**By02**]. Byott obtains $p^2 - 1$ non-classical Hopf Galois structures on a Galois extension of order p^2 with Galois group G. They have the form $H_{T,d}$ where T is a subgroup of Γ of order p and d is in \mathbb{F}_p . The regular subgroup of Perm(Γ) corresponding to $H_{T,d}$ is $\langle \eta, \rho \rangle$. We obtain $H_{T,d}$ by our construction by letting $T = \langle u_2 \rangle$. Then the permutations $\alpha(x_1) = \eta^{-1}$ and $\alpha(x_2) = \rho^{-1}$.

So for n = 2 a nilpotent multiplication A on the Galois group G with $\dim(A/A^2) = 1$ yields all of the non-trivial Hopf Galois structures on L/K.

LINDSAY N. CHILDS

Each Hopf Galois structure defined by a primitive nilpotent algebra A is by a K-Hopf algebra H with a unique K-subHopf algebra of order p, namely $L[\alpha(x_2)]^G \cong K[\lambda(u_2)]$.

Suppose L/K is a totally ramified Galois extension of local fields with Galois group G elementary abelian of order p^2 , and has two ramification breaks:

$$G = G_1 > G_2 > (1).$$

Byott showed that if L/K is *H*-Hopf Galois for a non-classical Hopf algebra $H_{T,d}$, and the associated order in $H_{T,d}$ of \mathfrak{O}_L is a Hopf order, then the unique *K*-subHopf algebra H_2 of $H_{T,d}$ acts on *L* like the group ring of the ramification group $K[G_2]$. The fixed field of the unique subHopf algebra of $H_{T,d}$ is the fixed field of the ramification group G_2 .

That observation invites a look at what these Hopf Galois structures look like for n > 2.

n = 3. For n = 3 define a multiplication on $(G, +) = \mathbb{F}_p x_1 + \mathbb{F}_p x_2 + \mathbb{F}_p x_3$ by

$$x_1^2 = d_2 x_2 + d_3 x_3, \quad x_1 x_2 = d' x_3$$

and all other products of x_1, x_2, x_3 are 0. Then for m > 1,

$$x_1^{\circ m} = mx_1 + \binom{m}{2}(d_2x_2 + d_3x_3) + \binom{m}{3}d'd_3x_3.$$

Picking a basis u_1, u_2, u_3 of Γ and letting $b : \Gamma \to (G, \circ)$ by $b(u_i) = x_i$, we get

$$b(\overline{r}) = \begin{pmatrix} r_1 \\ r_2 + \binom{r_1}{2} d_2 \\ r_3 + r_1 r_2 d' + \binom{r_1}{2} d_3 + \binom{r_1}{3} d_2 d' \end{pmatrix} = \begin{pmatrix} r_1 \\ r_2 + p_2(r_1) \\ r_3 + p_3(r_1, r_2) \end{pmatrix}$$

for some polynomials $p_2(x_1), p_3(x_1, x_2)$. Then b^{-1} has the same form.

The special case where the basis of A is z, z^2, z^3 $(d_2 = d' = 1, d_3 = 0)$ is slightly nicer. If we write

$$\overline{r} = r_1 u_1 + r_2 u_2 + r_3 u_2 = \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix}, \overline{s} = s_1 x_1 + s_2 x_2 + s_3 x_3 = \begin{pmatrix} s_1 \\ s_2 \\ s_3 \end{pmatrix},$$

and $b: \Gamma \to (G, \circ)$ is a homomorphism with $b(u_i) = x_i$, then

$$\overline{s} = b(\overline{r}) = \begin{pmatrix} r_1 \\ r_2 + \binom{r_1}{2} \\ r_3 + r_1 r_2 + \binom{r_1}{3} \end{pmatrix}$$

4

Then b^{-1} satisfies

$$\overline{r} = b^{-1}(\overline{s}) = \begin{pmatrix} s_1 \\ s_2 - \binom{s_1}{2} \\ s_3 - s_1 s_2 + s_1\binom{s_1}{2} - \binom{s_1}{3} \end{pmatrix}$$

To obtain a regular subgroup of $\operatorname{Perm}(\Gamma)$ from β , we define the embedding $\alpha : G \to \operatorname{Perm}(\Gamma)$ by

$$\alpha(\overline{r}) = b^{-1}\lambda(\overline{r})b : G \to \operatorname{Perm}(\Gamma)$$

Thus

$$\alpha(\bar{r})(\bar{t}) = b^{-1}\lambda(\bar{r})b(\bar{t})$$

= $b^{-1}\lambda(\bar{r})\begin{pmatrix} t_1\\t_2 + {t_1 \choose 2}\\t_3 + t_1t_2 + {t_1 \choose 3} \end{pmatrix}$
= $\begin{pmatrix} r_1 + t_1\\r_2 + t_2 - \frac{r_1^2}{2} - r_1t_1 + \frac{r_1}{2}\\f \end{pmatrix}$

where

$$f = r_3 + t_3 - r_1 r_2 - r_1 t_2 - r_2 t_1$$
$$- \frac{r_1}{3} + \frac{r_1 t_1}{2} + \frac{r_1^3}{3} + r_1^2 t_1 + \frac{r_1 t_1^2}{2}.$$

Then α has a "triangular" form. So

 $\alpha(x_3)$ acts on $\Gamma_3 = K \langle u_3 \rangle$ like $\lambda(u_3)$;

modulo Γ_3 , $\alpha(x_2)$ acts on Γ_2 like $\lambda(u_2)$, and

modulo Γ_2 , $\alpha(x_1)$ acts on Γ_1 like $\lambda(u_1)$.

Hardly surprising—the subquotient Hopf algebras of H of K-dimension p must be isomorphic to $K[C_p]$.

General *n*. Let $G = (\mathbb{F}_p^n, +)$ and define the primitive nilpotent \mathbb{F}_p algebra structure $(A = (\mathbb{F}_p^n, +, \cdot)$ on G by picking a basis (x_1, \ldots, x_n) for \mathbb{F}_p^n , let $z = x_1$ and let $x_k = z^k$ for $k \ge 1$, and $z^{n+1} = 0$. This is quite special, but a more general case should be derivable from this case by applying a unipotent change of basis to A.

We show that describing the corresponding regular subgroup $\alpha(G)$ of Perm(Γ) is computationally manageable.

The corresponding group structure (A, \circ) is defined by

$$z^i \circ z^j = z^i + z^j + z^{i+j}$$

Let $\mathbb{F}_p[x]$ be the polynomial ring, Then the map $y \mapsto 1 + y$ defines an isomorphism from (A, \circ) to the group $(1 + x)\mathbb{F}_p[x]/x^{n+1}\mathbb{F}_p[x]$ of principal units of $\mathbb{F}_p[x]/x^{n+1}\mathbb{F}_p[x]$. For

$$a \circ b \mapsto 1 + a \circ b = 1 + a + b + a \cdot b = (1 + a) \cdot (1 + b).$$

So for all $a_1, \ldots a_n$ in (A, \circ) ,

$$a_1 \circ a_2 \circ \ldots \circ a_m \mapsto (1+a_1) \cdot (1+a_2) \cdot \ldots \cdot (1+a_n).$$

Since p > n, (G, \circ) is an elementary abelian *p*-group with *p*-basis z, z^2, \ldots, z^n (by [Ch07]). So let $\Gamma = (\mathbb{F}_p^n, +)$ have basis u_1, \ldots, u_n and define an isomorphism $b : \Gamma \to (\mathbb{F}_p, \circ)$ by $b(u_i) = z^i$ for $i = 1, \ldots, n$, and

$$b(\sum_{i} r_{i}u_{i}) = (r_{1} \circ z) \circ (r_{2} \circ z^{2}) \circ \dots \circ (r_{n} \circ z^{n})$$
$$= (1+z)^{r_{1}} \cdot (1+z^{2})^{r_{2}} \cdot \dots \cdot (1+z^{n})^{r_{n}}.$$

Define $\beta = \tau b : \Gamma \to T \subset \text{Hol}(G)$. Then β is a regular embedding of Γ in Hol(G) and $\beta(\gamma)(0) = \tau(\xi(\gamma))(0) = b(\gamma)$.

To obtain the corresponding Hopf Galois structure on L/K, we construct the embedding $\alpha : G \to Perm(\Gamma)$ corresponding to β , by

$$\alpha(g)(\gamma) = b^{-1}\lambda(g)b(\gamma).$$

So we need to describe b^{-1} . Since $z^{n+1} = 0$, there exist s_1, \ldots, s_n in \mathbb{F}_p so that

$$b(\sum_{i} r_{i}u_{i}) = (1+z)^{r_{1}} \cdot (1+z^{2})^{r_{2}} \cdot \ldots \cdot (1+z^{n})^{r_{n}} = \sum_{j=1}^{n} s_{j}z^{j}.$$

To find b^{-1} , that is, to find r_1, \ldots, r_n in terms of s_1, \ldots, s_n we can use the logarithm function

$$\log_z(1+w) = \sum_{i=1}^n (-1)^{i+1} \frac{w^i}{i}.$$

for w in $z\mathbb{F}_p[z]/z^{n+1}\mathbb{F}_p[z]$. For w_1, w_2 multiples of z,

$$\log_z((1+w_1)(1+w_2)) = \log_z(1+w_1) + \log_z(1+w_2).$$

Applying \log_z to the equation for s_1, \ldots, s_n :

$$(1+z)^{r_1}(1+z^2)^{r_2}\cdots(1+z^n)^{r_n}=s_1z_1+\cdots z_nz_n$$

yields

$$\sum_{i=1}^{n} \log_{z}((1+z^{i})^{r_{i}}) = \log_{z}(s_{1}z_{1} + \dots + z_{n}z_{n})$$

or

$$\sum_{i=1}^{n} r_i \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} z^{ik} = \sum_{j=1}^{n} \frac{(-1)^{i+1}}{i} (s_1 z + \dots + s_n z^n)^i)$$

Modulo z^2, z^3, \ldots , one can see that $r_1 = s_1$ and there are polynomials $f_{i+1}(x_1, \ldots, x_n), g_{i+1}(x_1, \ldots, x_i)$ for $i = 1, 2, \ldots, n-1$ so that

$$r_{i+1} + f_{i+1}(r_1, \dots, r_i) = s_{i+1} + g_{i+1}(s_1, \dots, s_i).$$

Hence for $i = i, \ldots, n$,

$$s_i = r_i + ($$
 polynomial function of $r_1, \ldots, r_{i-1})$
 $r_i = s_i + ($ polynomial function of $s_1, \ldots, s_{i-1}).$

For a nilpotent algebra structure A on $(\mathbb{F}_p^n, +)$ with $\dim(A/A^2) = 1$, there is a unique chain

$$\alpha(G) = N_1 > N_2 > \ldots > N_n > (1)$$

of subgroups of $\alpha(A)$, and a corresponding chain

$$H = H_1 \supset H_2 \supset \ldots \supset H_n \supset K$$

of K-subHopf algebras of the Hopf algebra H corresponding to A, hence a corresponding chain of invariant subfields of L. This chain of subfields in turn corresponds to a unique chain

$$\Gamma = \Gamma_1 > \Gamma_2 > \ldots > \Gamma_n > (1)$$

of subgroups of the Galois group Γ of L/K.

Because of the form of b and b^{-1} , we see that N_i acts on Γ_i/Γ_{i+1} like $\lambda(\Gamma_i)$ for all i, and so $H_i//H_{i+1} \cong K[\Gamma_i/\Gamma_{i+1}]$.

Griff asked for "crazy ideas". Here is mine, speculating from the case n = 2:

Crazy idea: Let L/K be a totally ramified Galois extension of local fields of residue characteristic p with Galois group $\Gamma = C_p^n$ with p > n, Suppose L/K has a non-classical H-Hopf Galois extension of type $G \cong \Gamma$ corresponding to a primitive nilpotent algebra structure on G. Suppose \mathcal{O}_L is an \mathfrak{A}_H - Hopf Galois extension of \mathcal{O}_K for \mathfrak{A}_H the associated order in H. (So \mathfrak{A}_H is Hopf.) If

$$\Gamma = \Gamma_1 > \Gamma_2 > \ldots > \Gamma_n > (1)$$

is the ramification filtration of Γ , with fixed fields

$$K = K_1 \subset K_2 \subset \ldots \subset K_n \subset L,$$

then the K-Hopf algebra H must correspond to a primitive nilpotent algebra structure A on G, and the Hopf subalgebras of H arising from

the ideals of A must have the same chain of fixed fields as the ramification filtration of Γ .

This is false in general, even for n = 2. But it would be interesting to use the p^2 classification of Byott to see how the parameters i, j in that classification relate to the possible ideal structure of the nilpotent algebra A associated to a Hopf Galois structure H on L/K. I haven't had a chance to do this yet.

Appendix: The ideal structure of nilpotent algebras of dimension n = 3

For n = 3 we can pick representatives of the five isomorphism types of nilpotent algebra structures A on $G = (\mathbb{F}_p^3, +)$ and look at the corresponding ideal structures. At the very least these examples describe the possible K-subHopf algebras of the Hopf Galois structures corresponding to the different A.

 $A^2 = 0$. When $A^2 = 0$, the multiplicative structure on G is trivial. In that case, the corresponding Hopf Galois structure on L/K is the classical structure corresponding to the regular subgroup $\lambda(G) = \rho(G)$ of Perm(G). Every additive subgroup of A is an ideal, and every subgroup N of $\lambda(G)$ is $\lambda(G)$ -invariant, hence yields a subHopf algebra of KG, namely the group ring KN.

 $\dim(A/A^2) = 1$. This is the case where A is primitive. We described that situation above.

 $\dim(A^2) = 1$. In this case $A^3 = 0$ and we described the isomorphism types of nilpotent algebra structures A on (G, +) in Section 6 of [Ch16a]. By choosing a basis appropriately, we can assume that A has a basis (z_1, z_2, y) where $z_1^2 = y, z_2^2 = sy, z_1z_2 = 0$ and ya = 0 for all a in A. We may further assume that s = 0, 1 or a non-square s'. The cases s = 1, s = s' are identical for the ideal structure.

s = 0. Here is the lattice of ideals of A:

8

An arrow means inclusion. The parameters a, c runs through all elements of \mathbb{F}_p (so $\langle z_2 + c \rangle$ is one of p ideals in that position, one for each c in \mathbb{F}_p , and $\langle z_1 + az_2, y \rangle$ is one of p ideals in that position).

In terms of the surjectivity of the FTGT, here is a table counting the number of subspaces and the number of ideals of a given dimension over \mathbb{F}_p :

dimension	# subspaces	# ideals	# non-ideal subspaces
0	1	1	0
1	$p^2 + p + 1$	p+1	p^2
2	$p^2 + p + 1$	p+1	p^2
3	1	1	0

s = 1 or = s'. Here is the lattice of ideals of A:

$$\begin{array}{c} A \\ \uparrow \\ \langle y, az_1 + bz_2 \rangle \\ \uparrow \\ \langle y \rangle \\ \uparrow \\ \langle 0 \rangle \end{array}$$

Here a, b runs through all elements of \mathbb{F}_p , so $\langle y, az_1 + bz_2 \rangle$ stands for p^2 ideals in that position.

In terms of the surjectivity of the FTGT, here is a table counting the number of subspaces and the number of ideals of a given dimension over \mathbb{F}_p :

dimension	# subspaces	# ideals	# non-ideal subspaces
0	1	1	0
1	$p^2 + p + 1$	1	$p^2 + p$
2	$p^2 + p + 1$	p+1	p^2
3	1	1	0

Suppose L/K is totally ramified with Galois group $G \cong (F_p^3, +)$ and is *H*-Hopf Galois for some non-classical *K*-Hopf algebra *H* corresponding to a nilpotent algebra structure *A* on *G*. The work in [By02] suggests that for some sets of break numbers, if the associated order \mathfrak{A} of the valuation ring *S* in *H* is a Hopf order so that *S* is \mathfrak{A} -Hopf Galois over *R*, then there are restrictions on the break numbers of L/Kand on the sub-Hopf algebras of *H*, enough so that in some cases the restrictions define limitations on the lattice of subHopf algebras of *H*, which correspond to limitations on the ideals of *A*.

In particular, by analogy with the case n = 2, there may be cases involving three distinct break numbers where the only Hopf Galois

LINDSAY N. CHILDS

structures on L/K of interest will correspond to the primitive nilpotent algebra structure looked at earlier in these notes, where the subfields of L fixed by subHopf algebras of H are the subfields fixed by the ramification subgroups of G.

Obviously this line of investigation is just beginning.

References

- [By02] N. P. Byott, Integral Hopf-Galois structures on degree p^2 extensions of *p*-adic fields, J. Algebra, 248, (2002), 334–365.
- [Ch07] L. N. Childs, Some Hopf Galois structures arising from elementary abelian *p*-groups, Proc. Amer. Math. Soc. 135 (2007), 3453–3460.
- [Ch16a] L. N. Childs, Obtaining abelian Hopf Galois structures from finite commutative nilpotent rings, arxiv: 1604.05269
- [Ch16b] L. N. Childs, On the Galois correspondence for Hopf Galois extensions, arxiv:1604.06066

10