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This is a somewhat edited version of a short talk given at the 2016
Omaha workshop on Hopf Galois Structures and Galois Module The-
ory, May 26, 2016.

Egregious failure of the strong form of FTGT. Let L/K be a
field extension with Galois group isomorphic to Γ ∼= G = (Fnp ,+).
Assume p > n.

Let A be the primitive n-dimensional nilpotent Fp-algebra generated
by z with zn+1 = 0. Then (A,+) ∼= (Fnp ,+) and so the multiplication
on A yields a nilpotent Fp-algebra structure on (G,+) = (Fnp ,+). Let
Γ ∼= (Fnp , ◦) where the operation ◦ is defined using the multiplication
on A by a ◦ b = a+ b+ a · b. If p > n then (Fnp , ◦) ∼= (Fnp ,+).

In my other talk I described how a nilpotent Fp-algebra structure A
on (G,+) yields Hopf Galois structures on L/K by a K-Hopf algebra
H associated to A, and related the surjectivity of the Galois correspon-
dence from K-subHopf algebras of H to intermeditate fields between
K and L to the ideal structure of A (using the main theorem from
[Ch16b]). That led to the following set of examples:

Theorem 1. Let G be an elementary abelian p-group of order pn. Let
A be a primitive Fp-algebra structure A on G, and let (G, ◦) be the cor-
responding group structure on Fnp . Suppose L/K is a Galois extension
of fields with Galois group Γ ∼= (G, ◦). Then the primitive nilpotent
Fp-algebra A corresponds to an H-Hopf Galois structure on L/K for
some K-Hopf algebra H, where the K-subHopf algebras of H form a
single descending chain

H = H1 ⊃ H2 ⊃ . . . ⊃ Hn ⊃ K.

Hence the Galois correspondence F for H maps onto exactly n+1 fields
F with K ⊆ F ⊆ L.

So the Hopf Galois structures arising from a primitive nilpotent al-
gebra A seem to have a particularly rigid set of intermediate fields.
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The question I wondered about is, are these Hopf Galois structures
interesting for local Galois module theory? The bottom line is that I
don’t know.

In the rest of these notes I start looking at what the corresponding
regular subgroups of Perm(Γ) look like for a primitive nilpotent algebra.
In an Appendix, I look briefly at the ideal structure of the four other
isomorphism classes of nilpotent algebras over Fp of dimension 3.

Let G ∼= (Fnp ,+), let A be a nilpotent Fp-algebra structure on (G,+).
Let (G, ◦) be the corresponding group structure, where

a ◦ b = a+ b+ a · b.

Let T be the corresponding regular subgroup of Hol(G,+). Then

T = {τ(g) : g ∈ G} ⊂ Perm(G)

where τ(g)(x) = g ◦ x, hence τ(g)τ(h) = τ(g ◦ h) in T . Thus

τ : (G, ◦)→ T

is an isomorphism from (G, ◦) into Perm(G).

Let L/K be a Galois extension of fields with abelian Galois group Γ
of order pn. Let b : Γ→ (G, ◦) be an isomorphism of groups. Then the
map

β = τb : Γ→ T

is a regular embedding of Γ into Hol(G).
The corresponding regular embedding α : G → Perm(Γ) is defined

by

α(g) = b−1(λ(g))b :

for x in G, α(g)(x) = b−1(λ(g)b(x)).
Then λ(Γ) normalizes α(G) in Perm(G): in fact, for b(γ) = g in G,

λ(γ)α(h)λ(γ)−1 = α(h+ g · h).

So α(G) yields by descent the K-Hopf algebra H = L[α(G)]Γ corre-
sponding to A and the isomorphism b : Γ → (G, ◦), and H acts on L
as follows: if

h =
∑
g∈G

sgα(g)

then for t in L,

h(t) =
∑
γ∈Γ

s−b(γ)γ(t).
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n=2. Let L/K be a Galois extension of fields with Galois group Γ an
elementary abelian p-group of order p2, and let G also be an elementary
abelian p-group of order p2. Let x1, x2 be a basis of G ∼= (F2

p,+) and

define a nilpotent ring structure on G by setting x2
1 = dx2 and x2·xi = 0

for i = 1, 2. This defines the circle multiplication on G by

y ◦ w = y + w + y · w

for all y, w in (G,+). We define an isomorphism b : Γ → (G, ◦) by
picking a basis u1, u2 for Γ and setting b(u1) = x1, b(u2) = x2. Then

b(ur11 u
r2
2 ) = x◦r11 ◦ x◦r22 = r1x1 + (

(
r2

2

)
d+ r2)x2.

or in terms of components relative to the two bases for Γ and G,

b(

(
r1

r2

)
=

(
(r1

r2 +
(
r1
2

)
d

)
.

Then

b−1

(
s1

s2

)
=

(
s1

s2 −
(
s1
2

)
d

)
.

We then define α : (G,+)→ Perm(G) by

α(r)(t) = b−1(λ(r)(b(t)))

= b−1

(
r1 + t1

r2 + t2 +
(
t1
2

)
d

)
=

(
r1 + t1

r2 + t2 +
(
t1
2

)
d−

(
r1+t1

2

)
d

)
In particular,

α

(
0
1

)
(t) =

(
t1

1 + t2

)
α

(
1
0

)
(t) =

(
t1 + 1
t2 − t1d

)
.

Thus the unique K-subHopf algebra of H corresponds to the sub-
group α(〈x2〉), which acts on G like 〈λ(u2)〉.

Comparing with [By02]. Byott obtains p2 − 1 non-classical Hopf
Galois structures on a Galois extension of order p2 with Galois group
G. They have the form HT,d where T is a subgroup of Γ of order p and
d is in Fp. The regular subgroup of Perm(Γ) corresponding to HT,d is
〈η, ρ〉. We obtain HT,d by our construction by letting T = 〈u2〉. Then
the permutations α(x1) = η−1 and α(x2) = ρ−1.

So for n = 2 a nilpotent multiplication A on the Galois group G with
dim(A/A2) = 1 yields all of the non-trivial Hopf Galois structures on
L/K.



4 LINDSAY N. CHILDS

Each Hopf Galois structure defined by a primitive nilpotent algebra
A is by a K-Hopf algebra H with a unique K-subHopf algebra of order
p, namely L[α(x2)]G ∼= K[λ(u2)].

Suppose L/K is a totally ramified Galois extension of local fields with
Galois group G elementary abelian of order p2, and has two ramification
breaks:

G = G1 > G2 > (1).

Byott showed that if L/K is H-Hopf Galois for a non-classical Hopf
algebra HT,d, and the associated order in HT,d of OL is a Hopf order,
then the unique K-subHopf algebra H2 of HT,d acts on L like the group
ring of the ramification group K[G2]. The fixed field of the unique
subHopf algebra of HT,d is the fixed field of the ramification group G2.

That observation invites a look at what these Hopf Galois structures
look like for n > 2.

n = 3. For n = 3 define a multiplication on (G,+) = Fpx1+Fpx2+Fpx3

by

x2
1 = d2x2 + d3x3, x1x2 = d′x3

and all other products of x1, x2, x3 are 0. Then for m > 1,

x◦m1 = mx1 +

(
m

2

)
(d2x2 + d3x3) +

(
m

3

)
d′d3x3.

Picking a basis u1, u2, u3 of Γ and letting b : Γ→ (G, ◦) by b(ui) = xi,
we get

b(r) =

 r1

r2 +
(
r1
2

)
d2

r3 + r1r2d
′ +
(
r1
2

)
d3 +

(
r1
3

)
d2d
′

 =

 r1

r2 + p2(r1)
r3 + p3(r1, r2)


for some polynomials p2(x1), p3(x1, x2). Then b−1 has the same form.

The special case where the basis of A is z, z2, z3 (d2 = d′ = 1, d3 = 0)
is slightly nicer. If we write

r = r1u1 + r2u2 + r3u2 =

r1

r2

r3

 , s = s1x1 + s2x2 + s3x3 =

s1

s2

s3

 ,

and b : Γ→ (G, ◦) is a homomorphism with b(ui) = xi, then

s = b(r) =

 r1

r2 +
(
r1
2

)
r3 + r1r2 +

(
r1
3

)
 .
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Then b−1 satisfies

r = b−1(s) =

 s1

s2 −
(
s1
2

)
s3 − s1s2 + s1

(
s1
2

)
−
(
s1
3

)
 .

To obtain a regular subgroup of Perm(Γ) from β, we define the em-
bedding α : G→ Perm(Γ) by

α(r) = b−1λ(r)b : G→ Perm(Γ).

Thus
α(r)(t) = b−1λ(r)b(t)

= b−1λ(r)

 t1
t2 +

(
t1
2

)
t3 + t1t2 +

(
t1
3

)


=

 r1 + t1

r2 + t2 − r21
2
− r1t1 + r1

2
f


where

f = r3 + t3 − r1r2 − r1t2 − r2t1

− r1

3
+
r1t1

2
+
r3

1

3
+ r2

1t1 +
r1t

2
1

2
.

Then α has a “triangular” form. So

α(x3) acts on Γ3 = K〈u3〉 like λ(u3);

modulo Γ3, α(x2) acts on Γ2 like λ(u2), and

modulo Γ2, α(x1) acts on Γ1 like λ(u1).

Hardly surprising–the subquotient Hopf algebras ofH ofK-dimension
p must be isomorphic to K[Cp].

General n. Let G = (Fnp ,+) and define the primitive nilpotent Fp-
algebra structure (A = (Fnp ,+, ·) on G by picking a basis (x1, . . . , xn)

for Fnp , let z = x1 and let xk = zk for k ≥ 1, and zn+1 = 0. This is quite
special, but a more general case should be derivable from this case by
applying a unipotent change of basis to A.

We show that describing the corresponding regular subgroup α(G)
of Perm(Γ) is computationally manageable.

The corresponding group structure (A, ◦) is defined by

zi ◦ zj = zi + zj + zi+j.
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Let Fp[x] be the polynomial ring, Then the map y 7→ 1 + y defines
an isomorphism from (A, ◦) to the group (1 + x)Fp[x]/xn+1Fp[x] of
principal units of Fp[x]/xn+1Fp[x]. For

a ◦ b 7→ 1 + a ◦ b = 1 + a+ b+ a · b = (1 + a) · (1 + b).

So for all a1, . . . an in (A, ◦),
a1 ◦ a2 ◦ . . . ◦ am 7→ (1 + a1) · (1 + a2) · . . . · (1 + an).

Since p > n, (G, ◦) is an elementary abelian p-group with p-basis
z, z2, . . . , zn (by [Ch07]). So let Γ = (Fnp ,+) have basis u1, . . . , un and

define an isomorphism b : Γ → (Fp, ◦) by b(ui) = zi for i = 1, . . . , n,
and

b(
∑
i

riui) = (r1 ◦ z) ◦ (r2 ◦ z2) ◦ . . . ◦ (rn ◦ zn)

= (1 + z)r1 · (1 + z2)r2 · . . . · (1 + zn)rn .

Define β = τb : Γ→ T ⊂ Hol(G). Then β is a regular embedding of
Γ in Hol(G) and β(γ)(0) = τ(ξ(γ))(0) = b(γ).

To obtain the corresponding Hopf Galois structure on L/K, we con-
struct the embedding α : G→ Perm(Γ) corresponding to β, by

α(g)(γ) = b−1λ(g)b(γ).

So we need to describe b−1. Since zn+1 = 0, there exist s1, . . . , sn in Fp
so that

b(
∑
i

riui) = (1 + z)r1 · (1 + z2)r2 · . . . · (1 + zn)rn =
n∑
j=1

sjz
j.

To find b−1, that is, to find r1, . . . , rn in terms of s1, . . . , sn we can use
the logarithm function

logz(1 + w) =
n∑
i=1

(−1)i+1w
i

i
.

for w in zFp[z]/zn+1Fp[z]. For w1, w2 multiples of z,

logz((1 + w1)(1 + w2) = logz(1 + w1) + logz(1 + w2).

Applying logz to the equation for s1, . . . , sn:

(1 + z)r1(1 + z2)r2 · . . . · (1 + zn)rn = s1z1 + . . . znzn

yields

n∑
i=1

logz((1 + zi)ri) = logz(s1z1 + . . . znzn)
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or
n∑
i=1

ri

n∑
k=1

(−1)k+1

k
zik =

n∑
j=1

(−1)i+1

i
(s1z + . . .+ snz

n)i).

Modulo z2, z3, . . ., one can see that r1 = s1 and there are polynomials
fi+1(x1, . . . , xn), gi+1(x1, . . . , xi) for i = 1, 2, . . . , n− 1 so that

ri+1 + fi+1(r1, . . . , ri) = si+1 + gi+1(s1, . . . , si).

Hence for i = i, . . . , n,

si = ri + ( polynomial function of r1, . . . , ri−1)

ri = si + ( polynomial function of s1, . . . , si−1).

For a nilpotent algebra structure A on (Fnp ,+) with dim(A/A2) = 1,
there is a unique chain

α(G) = N1 > N2 > . . . > Nn > (1)

of subgroups of α(A), and a corresponding chain

H = H1 ⊃ H2 ⊃ . . . ⊃ Hn ⊃ K

ofK-subHopf algebras of the Hopf algebraH corresponding to A, hence
a corresponding chain of invariant subfields of L. This chain of subfields
in turn corresponds to a unique chain

Γ = Γ1 > Γ2 > . . . > Γn > (1)

of subgroups of the Galois group Γ of L/K.
Because of the form of b and b−1, we see that Ni acts on Γi/Γi+1 like

λ(Γi) for all i, and so Hi//Hi+1
∼= K[Γi/Γi+1].

Griff asked for ”crazy ideas”. Here is mine, speculating from the case
n = 2:

Crazy idea: Let L/K be a totally ramified Galois extension of local
fields of residue characteristic p with Galois group Γ = Cn

p with p >
n, Suppose L/K has a non-classical H-Hopf Galois extension of type
G ∼= Γ corresponding to a primitive nilpotent algebra structure on
G. Suppose OL is an AH- Hopf Galois extension of OK for AH the
associated order in H. (So AH is Hopf.) If

Γ = Γ1 > Γ2 > . . . > Γn > (1)

is the ramification filtration of Γ, with fixed fields

K = K1 ⊂ K2 ⊂ . . . ⊂ Kn ⊂ L,

then the K-Hopf algebra H must correspond to a primitive nilpotent
algebra structure A on G, and the Hopf subalgebras of H arising from
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the ideals of A must have the same chain of fixed fields as the ramifi-
cation filtration of Γ.

This is false in general, even for n = 2. But it would be interesting
to use the p2 classification of Byott to see how the parameters i, j in
that classification relate to the possible ideal structure of the nilpotent
algebra A associated to a Hopf Galois structure H on L/K. I haven’t
had a chance to do this yet.

Appendix: The ideal structure of nilpotent algebras of
dimension n = 3

For n = 3 we can pick representatives of the five isomorphism types
of nilpotent algebra structures A on G = (F3

p,+) and look at the cor-
responding ideal structures. At the very least these examples describe
the possible K-subHopf algebras of the Hopf Galois structures corre-
sponding to the different A.

A2 = 0. When A2 = 0, the multiplicative structure on G is trivial.
In that case, the corresponding Hopf Galois structure on L/K is the
classical structure corresponding to the regular subgroup λ(G) = ρ(G)
of Perm(G). Every additive subgroup of A is an ideal, and every sub-
group N of λ(G) is λ(G)-invariant, hence yields a subHopf algebra of
KG, namely the group ring KN .

dim(A/A2) = 1. This is the case where A is primitive. We described
that situation above.

dim(A2) = 1. In this case A3 = 0 and we described the isomor-
phism types of nilpotent algebra structures A on (G,+) in Section
6 of [Ch16a]. By choosing a basis appropriately, we can assume that A
has a basis (z1, z2, y) where z2

1 = y, z2
2 = sy, z1z2 = 0 and ya = 0 for all

a in A. We may further assume that s = 0, 1 or a non-square s′. The
cases s = 1, s = s′ are identical for the ideal structure.

s = 0. Here is the lattice of ideals of A:
A

↗ ↖
〈z1 + az2, y〉 〈z2, y〉

↗
↑ ↗ ↑
↗

〈y〉 〈z2 + cy〉
↖ ↗
〈0〉
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An arrow means inclusion. The parameters a, c runs through all
elements of Fp (so 〈z2 + c〉 is one of p ideals in that position, one for
each c in Fp, and 〈z1 + az2, y〉 is one of p ideals in that position).

In terms of the surjectivity of the FTGT, here is a table counting the
number of subspaces and the number of ideals of a given dimenision
over Fp:

dimension # subspaces # ideals # non-ideal subspaces
0 1 1 0
1 p2 + p+ 1 p+ 1 p2

2 p2 + p+ 1 p+ 1 p2

3 1 1 0

s = 1 or = s′. Here is the lattice of ideals of A:
A
↑

〈y, az1 + bz2〉
↑
〈y〉
↑
〈0〉

Here a, b runs through all elements of Fp, so 〈y, az1 + bz2〉 stands for
p2 ideals in that position.

In terms of the surjectivity of the FTGT, here is a table counting the
number of subspaces and the number of ideals of a given dimenision
over Fp:

dimension # subspaces # ideals # non-ideal subspaces
0 1 1 0
1 p2 + p+ 1 1 p2 + p
2 p2 + p+ 1 p+ 1 p2

3 1 1 0

Suppose L/K is totally ramified with Galois group G ∼= (F 3
p ,+)

and is H-Hopf Galois for some non-classical K-Hopf algebra H corre-
sponding to a nilpotent algebra structure A on G. The work in [By02]
suggests that for some sets of break numbers, if the associated order A
of the valuation ring S in H is a Hopf order so that S is A-Hopf Ga-
lois over R, then there are restrictions on the break numbers of L/K
and on the sub-Hopf algebras of H, enough so that in some cases the
restrictions define limitations on the lattice of subHopf algebras of H,
which correspond to limitations on the ideals of A.

In particular, by analogy with the case n = 2, there may be cases
involving three distinct break numbers where the only Hopf Galois
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structures on L/K of interest will correspond to the primitive nilpotent
algebra structure looked at earlier in these notes, where the subfields
of L fixed by subHopf algebras of H are the subfields fixed by the
ramification subgroups of G.

Obviously this line of investigation is just beginning.
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